

Einführung in die Wirtschaftsinformatik

Teil 3 - Von der Realwelt zum Datenmodell Wintersemester 2025/2026

Lehrstuhl für Wirtschaftsinformatik
Prozesse und Systeme

Universität Potsdam

Chair of Business Informatics Processes and Systems

University of Potsdam

Univ.-Prof. Dr.–Ing. habil. Norbert Gronau *Lehrstuhlinhaber* | *Chairholder*

Mail August-Bebel-Str. 89 | 14482 Potsdam | GermanyVisitors Digitalvilla am Hedy-Lamarr-Platz, 14482 Potsdam

Tel +49 331 977 3322

E-Mail ngronau@lswi.de

Web Iswi.de

Lernziele

- Wie wird die reale Welt in ein Datenmodell überführt?
- Welche Abbildungsschritte führen vom Original bis zur physischen Datenbank?
- Was sind Datenmodelle und Datenstrukturen und welche Typen werden unterschieden?
- Welche Aufgaben und Bestandteile besitzen Datenbanken und Datenbankmanagementsysteme (DBMS)?
- Wie funktioniert das Entity-Relationship-Modell und wie werden Entities, Attribute und Beziehungen dargestellt?

Modellierung - Abbildung des betrachteten Originals

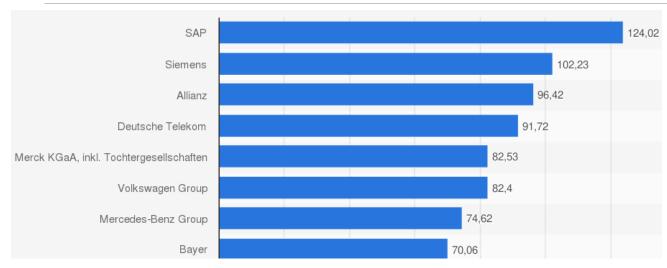
Vom Original zum Modell - Abbildungsschritte

Datenmodelle und -strukturen

Datenbanken und Datenbankmanagementsysteme

Das konzeptionelle Schema: Prinzip des Entity Relationship Modells (ERM)

Hörsaal-Quiz - Einleitungsfragen


Öffnet die App über den QR-Code oder den Link:

https://quiz.lswi.de/

pwd: ewinf

Daten

Größte dt. Unternehmen Stand 22.April 2022

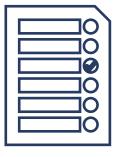
Statisches Abbild der Anwendungswelt

- Personen Fußballspieler, Politiker, Studierende
- Gegenstände Bücher, Werkzeuge
- Künstliche Objekte Bank- oder Versicherungskonten

Indirekter Ausdruck der Dynamik

- Kontostand vor und nach einer Transaktion
- Umsatzvolumen vor und nach einer Rechnungsstellung
- Spieltabelle (Turniertabelle) vor und nach einem Spieltag

Daten bilden die Basis für die Verknüpfung von Informationen. Werden Informationen von Personen interpretiert, entsteht Wissen.


Prinzipien der Kategorisierung von Daten

Lagerbestände, Kontostände, Aufträge

Lagerbestände, Kontostände, Aufträge

Bruttopreis von
Produkten über
Mehrwertsteuer

... nach Inhalt

- **Stammdaten** und deren Änderungen --> Seltene Veränderungen
- Bestandsdaten und deren Änderung durch Bewegungsdaten --> Häufige Veränderungen

... nach Aufgabe

- Ordnungsdaten --> Identifikation (Personen, Dinge) oder Vergleiche (Preise, Gehälter)
- **Rechendaten** --> Berechnung oder Umrechnung von Werten

Aufgaben in der Datenhaltung

Aufgaben in betriebswirtschaft-lichen Informationssystemen

- Erfassung von Geschäftsvorfällen (Bewegungsdaten)
- Verarbeiten der Geschäftsvorfälle (Verarbeiten mit Stamm- oder Bestandsdaten)
- Pflege der Stammdaten (Aktualisierung der Stammdaten - Änderungsdienst)
- Informationsabfragen (Standard-/Adhoc-Abfragen)

Auswählbare Grundoperationen für Datenbearbeitung

- Auffinden wird mehrfach benötigt
- Einfügen
- Ändern
- Entfernen

Die Operation Auffinden bestimmt häufig über das Antwortzeitverhalten des gesamten Informationssystems.

Die Logische Sicht auf Daten

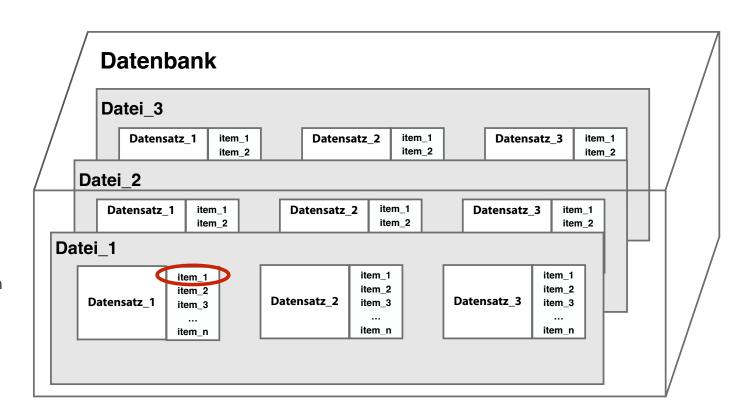
Logische Sicht

- Hierarchische Dateiverwaltung -> Verzeichnisse (directories)
- Datei -> auf Datenspeicher abgelegte Datenmenge mit Zugriff über Dateiname

Dateiinhalt

- Datenobjekte
- Beschreibung durch ihre Eigenschaften (Attribute)

Beispiele - Objekte


- Personen: Lieferanten, Kunden, Mitarbeiter
- Gegenstände: Maschinen, Werkzeuge, Materialien
- Abstrakte: Konten, Buchungen, Rechnungen

Dazu werden Verfahren zur Strukturierung von Daten bzw. -beständen eingesetzt.

Quelle: Stahlknecht 2002, S. 138ff.

Datenstrukturen (Dateneinheiten)

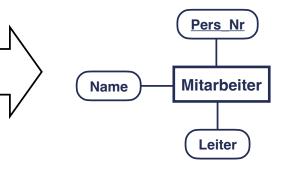
- Datenelement (item) kleinste logische Dateneinheit (z.B. Wohnort, Produktnummer, Nachname, etc.)
- Datensatz (record) Bildung durch
 Datenelemente desselben Objekts (z.B. Kunde = Kundennummer, Nachname, Vorname, etc.)
- Datei (file) gleichartige und logisch zusammengehörige Datensätze (z.B. Kunden, Produkte, Zulieferer, etc.)
- Datenbank (data base) kann aus mehreren Dateien bestehen (Hinweis: Zwischen den einzelnen Dateien bestehen dabei immer logische Abhängigkeiten)

Datenstrukturen beschreiben, wie Daten inhaltlich miteinander verbunden werden.

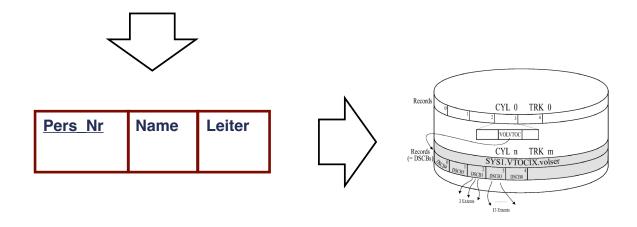
Modellierung - Abbildung des betrachteten Originals

Vom Original zum Modell - Abbildungsschritte

Datenmodelle und -strukturen


Datenbanken und Datenbankmanagementsysteme

Das konzeptionelle Schema: Prinzip des Entity Relationship Modells (ERM)


Schritte der Abbildung der realen Welt

Ausschnitt der realen Welt

Konzeptuelles Modell

Logisches Modell

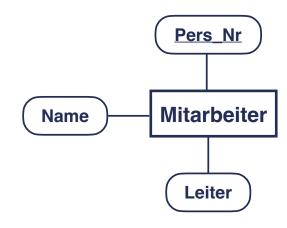
Physisches Modell

Abbildung der realen Welt

Merkmale

- Ausgangspunkt Abstraktion der betrachteten (Diskurs)Welt
- Betrachtungsfelder Vorgänge, Veränderungen oder statische Momentaufnahmen
- Zweck strukturierte und geordnete Repräsentation als 1zu-1 Abbildung mit hinreichender Genauigkeit
- **Ziel** Beschreibung, Analyse, Entscheidung

Beispiele

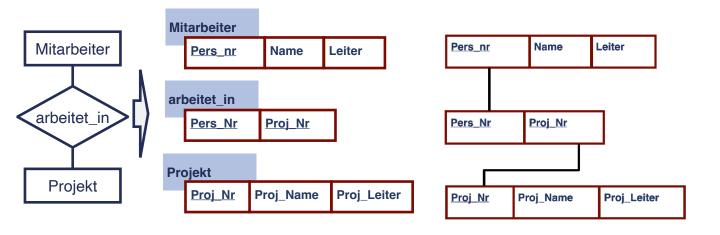

- Arbeitsgebiet des Einkäufers/Verkäufers
- Lager
- Buchhaltungsbereiche
- Produktionsprozesse

Konzeptuelles Schema

Aufgabe

- Erzeugung einer umfassenden Strukturierung der gesamten Informationsanforderungen
- Konzeptueller Entwurf der Miniwelt

Ergebnis


- Konzeptuelles Schema
- Umfassende Beschreibung der gesamt interessierenden Anwendungswelt (z.B. Schema einer Import-/ Exportfirma)

Darstellung

Entity Relationship Modell

...stellt zu betrachtende Daten anwendungs- und speicherneutral dar.

Logisches Schema

Relationales Datenmodell Relationstyp/Relationsformat Attribut Relation Fremdschlüssel Tupel Attributwert

Weiterführung

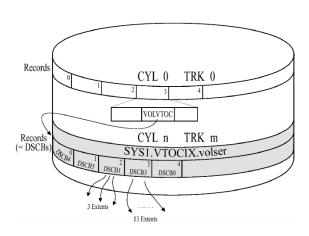
- Logischer Entwurf
- Abbildung der Zusammenhänge des konzeptuellen Schemas in Relationsschemata

Ergebnis

- Logisches Schema
- Teil des zum Einsatz kommenden (relationalen) Datenbanksystems (DB-Realisierung)

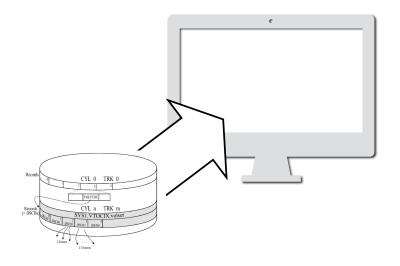
Darstellung

Relationenmodell


Die Logische Datenmodellierung stellt sicher, dass der Datenbestand vollständig anwendungsneutral und unabhängig von der späteren physischen Speicherung beschrieben wird.

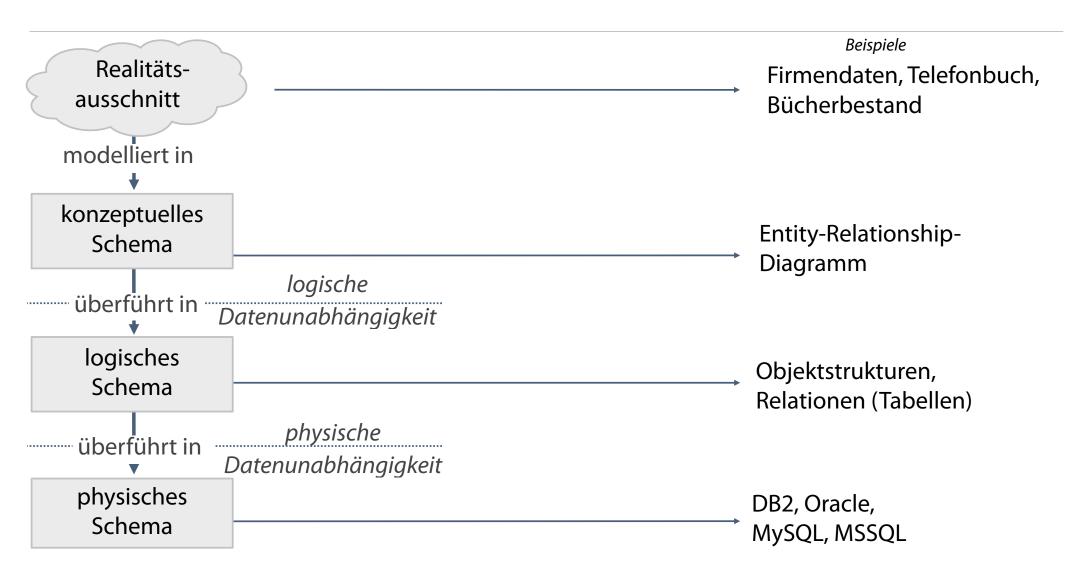
Physisches Schema

Relationales Datenmodell Relationstyp/Relationsformat Attribut Relation Fremdschlüssel Tupel Attributwert


Realisierung

- Physischer Entwurf
- Speicherung von Relationen auf Speichermedien

Ergebnis


- Physische Ablage der Daten auf Speichermedium als Dateien, physische Records unsortiert
- Zugriffsbeschleunigung durch Indizierung der Records

Darstellung

- Interne Speicherorganisation einer Festplatte
- Zugriffe auf Hardware von Datenbank (Oracle u.a.) über Betriebssystem

Abbildungsschritte von der Realität zur physischen Datenbank

Schemata sind zentrale Ergebnisse der Datenmodellierung!

Modellierung - Abbildung des betrachteten Originals

Vom Original zum Modell - Abbildungsschritte

Datenmodelle und -strukturen

Datenbanken und Datenbankmanagementsysteme

Das konzeptionelle Schema: Prinzip des Entity Relationship Modells (ERM)

Hörsaal-Quiz - Recap erste Hälfte

Öffnet die App über den QR-Code oder den Link:

https://quiz.lswi.de/

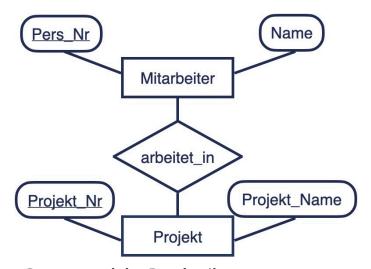
Pwd: ewinf

Datenmodelle

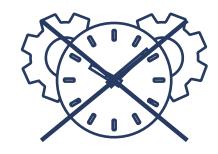
Inhalte

- Beschreibung einer Ordnungsvorstellung zur Strukturierung der Daten in einer Datenbank
- Festlegung der elementaren Datentypen und Datenstrukturen
- Beachtung eines Diskursbereichs (klar nach außen abgegrenzte Miniwelt)
- Vorgabe der Hilfsmittel, mit denen ein Diskursbereich hinsichtlich seiner Struktur und Inhalte modelliert wird
- Beschreibung der statischen Aspekte eines Systems

Beispiele


- Entity-Relationship-Modell (ERM, viele Erweiterungen)
- Relationales Modell
- Objektorientiertes Datenmodell
- Objekt-relationales Datenmodell (Kombination aus den beiden vorgenannten)

Datenmodellierung für statische Systeme



- Modellierung einer Miniwelt
- Beschreibung der Struktur großer Datenmengen
- Beispiele: Kundendaten, Bibliotheksbestand, ...

Gegenstand der Beschreibung

- Beteiligte Objekte (Entitäten, Datensätze, ...) und deren Eigenschaften (Attribute)
- Statische Beziehungen zwischen den Objekten

NICHT Gegenstand der Beschreibung

- Abläufe resp. zeitliches Verhalten etc.
- Datenflüsse oder Interaktionen

Modellierung - Abbildung des betrachteten Originals

Vom Original zum Modell - Abbildungsschritte

Datenmodelle und -strukturen

Datenbanken und Datenbankmanagementsysteme

Das konzeptionelle Schema: Prinzip des Entity Relationship Modells (ERM)

Datenorientierte Software

Datenbankmanagementsystem (DBMS)

- Leistet technische Verwaltung einer oder mehrerer Datenbanken
- Bsp.: ORACLE, MySQL, DB2, Sybase, SAP HANA,...

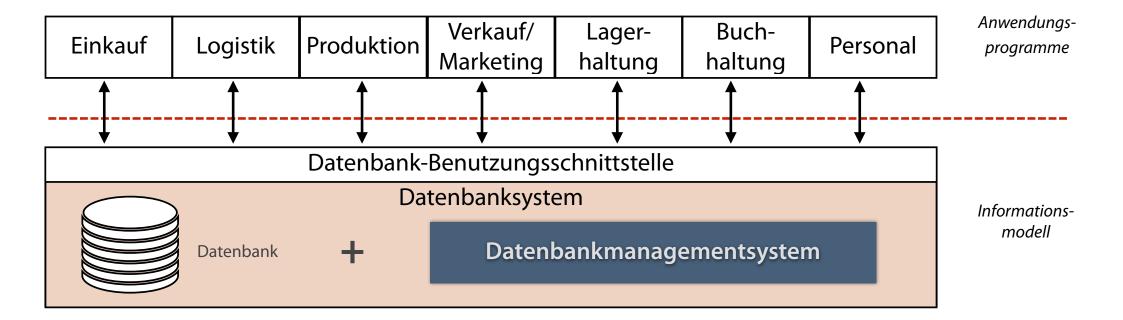
Datenbanksystem (DBS)

- DBMS sowie von ihm verwaltete Datenbanken
- Bsp.: MySQL mit Datenbank der Import-/Export- Firma

(DB)-Anwendung, Anwendungsprogramm

- Greift auf DBS zu realisiert Funktionen für Anwender
- Bsp.: Auftragserfassung der Import-/Export-Firma

Informationssystem (IS)


- Anwendungen und DBS sind zusammengefasst
- Bsp.: Gesamte, integrierte operative SW Import-/Export-Firma

Aufgabe und Ziel der Software besteht in der Strukturierung und Speicherung der Daten nach festgeschriebenen Ordnungskriterien.

Datenbanken

Inhalt der Datenbank

- Datenbankschema
- Eine Menge von konkreten Daten

Datenbanken beschreiben genau einen Zustand der im Schema modellierten Anwendungswelt.

Anforderungen durch Datenbanken

Anforderungen an die Hardware

- Große Speicherkapazität
- Effiziente Verarbeitung, kurze Antwortzeiten
- Niedrige Kosten

Anforderungen an den Aufbau

- Datenunabhängigkeit: Änderungen auf einer Ebene wirken sich nicht auf andere Ebenen aus
- siehe auch Architekturmodell:3-Schichtenkonzept

Anforderungen an die Software

- Datensicherheit und –schutz
- Vermeidung von Redundanz
- Konsistenz (Widerspruchsfreiheit)
- Persistenz (Robustheit gegenüber Hardwarefehlern)

Anforderungen an die Bedienung

- Einhaltung von Standards
- Benutzerfreundlich, strukturierte Ablage (logisch, physisch)
- Mehrbenutzerbetrieb

Datenunabhängigkeit ist die wesentlichste Anforderung. Sie beinhaltet die Trennung von Daten und Programmcode.

Quelle: Elmasri 2002, S. 571ff.

Vorteile von Datenbanken

Einheitliches Konzept

- Verringerung von Erstellungsund Verwaltungsaufwand
- Zusammenfassung mehrfach benötigter Funktionen

Kollisionsfreier paralleler Datenzugriff

- Gleichzeitiger Zugriff auf Daten durch mehrere Anwender
- Datenformat unabhängig von Bezug nehmenden Programmen
- Möglichkeit spontaner Abfragen abweichend von Programmen

Vermeidung von Datenredundanz

- Zu jedem in DB gespeicherten
 Objekt genau ein Satz von Daten
- Verminderung mangelnder Übereinstimmung (z.B. bei Änderungen)

Zentrale Datensicherheit und -schutz

- Vertraulichkeit
- Integrität der Daten

...gegenüber der Einzelablage im Dateisystem oder in der einzelnen Anwendung.


Schutz der Daten vor Verlust oder ungewollter Veränderung

Ziele

- Datensicherheit Schutz vor Verlust von Datenbeständen durch technische Ausfälle
- Datenintegrität Maßnahmen zur Gewährleistung unbeschädigter Daten in einem System während der Verarbeitung

Transaktionen als Konzept

- "Übergang der Datenbank von einem in einen anderen konsistenten Zustand"
- In sich abgeschlossener Verarbeitungsschritt innerhalb der Anwendungen der betreffenden Miniwelt
- Kann aus mehreren Teilschritten bzw. Vorgängen bestehen

Quelle: Stahlknecht 2002, S.192f.

ACID-Prinzip

Atomare Transaktionen (Atomicity)

- Änderung passiert ganz oder gar nicht
- Auch bei mehreren Schritten

Konsistente Transaktionen (Consistency)

- Datenbank wird in einem konsistenten Zustand gehalten
- War vor Ausführung der Änderung in einem solchen

Isolierte Transaktionen (Isolation)

- Unabhängig von eventuell parallel laufenden Prozessen
- Verarbeitung nur konsistenter Daten

Dauerhafte Transaktionen (Durability)

- Permanente Erhaltung geänderter Daten in der Datenbank
- Auch: Pufferdaten

Das Transaktionsprinzip realisiert die Sicherung vor Datenverlust.

Logische und physische Datenunabhängigkeit

Logische Datenunabhängigkeit (Anwendungsunabhängigkeit)

- Änderungen bzw. Erweiterungen von Anwendungsschnittstellen
 → keine Auswirkung auf DB-Funktionen
- Änderungen in der Systemumgebung (Datenbank- tuning, Erweiterung von Speicherstrukturen) → keine Auswirkung auf Funktionen in Anwendungs- programmen

Beispiel:

 Erweitern einer Tabelle um neue Spalte für \$-Werte für Internationalisierung des Vertriebs

Physische Datenunabhängigkeit (Implementierungsunabhängigkeit)

- Beziehung zwischen logischer und physischer Ebene
- Wahl der Datenstruktur für die Speicherung der Daten → keine Auswirkung auf die benutzte konzeptuelle Sicht auf den Datenbestand
- Organisation von Datenstruktur und Zugriffspfaden ist nicht Programmaufgabe
 - → Transparenz der physischen Organisation der Daten für Dialoge und Programme

Beispiel:

"Umzug" auf neuen Datenbank-Server

Quelle: Elmasri 2002, S. 51f.

Einsatzbeispiele für Datenbanken

Traditionelle Bereiche

- Kaufmännische informationsverarbeitende Aktivitäten in Verwaltungsabteilungen großer Organisationen
- Beispiele: Versicherungen, Banken, Versand- und Telekommunikationsunternehmen etc.

Software

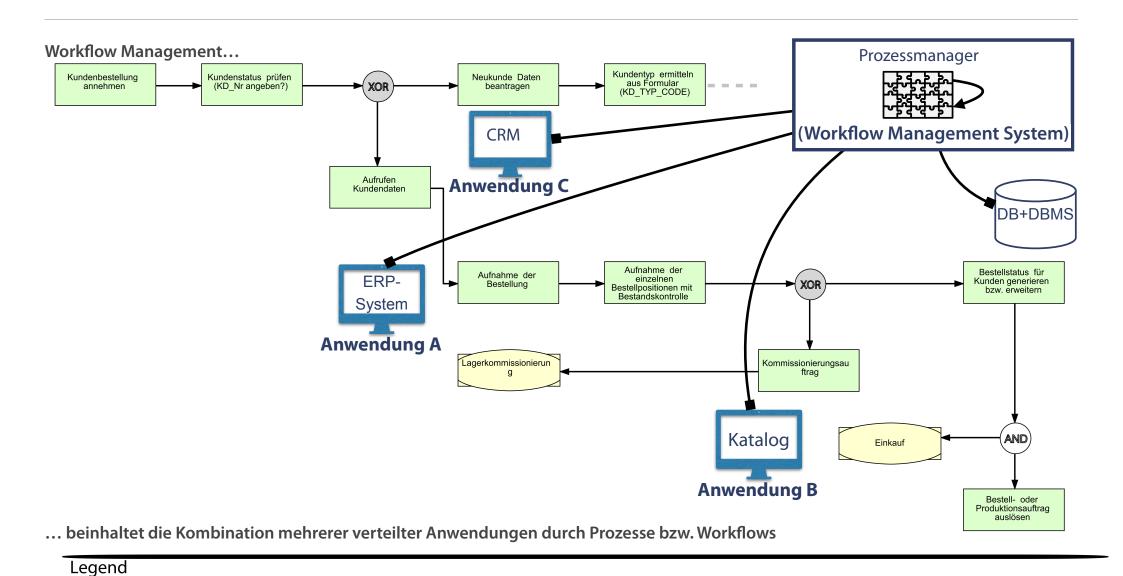
- Modulbibliotheken (Cross References)
- Repositories (z. B. Datenbanken zur Versionsverwaltung von Dokumenten)

Dienstleistungen

- Abrechnungs- und Auskunftssysteme
- Stadtkarten, Stadtplan/Fahrtrouten-Webdienste
- Strukturierte digitale Bibliotheken, z. B. Bilddatenbanken
- Kinoprogramm, Kleinanzeigenmarkt, ...

Unternehmen

- Warenwirtschaftssysteme
- Unternehmensplanungs- und -steuerungssysteme (ERP, PPS, ...)
- Kundenbetreuungssysteme (CRM)
- Verwaltung und Bearbeitung medialer Daten wie z. B. Webseiten (CMS)

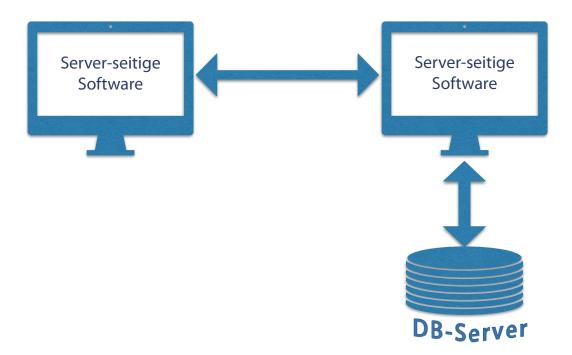

Anwendungsbeispiele – Verteilte Systeme (Anwendungen)

XOR

Control Flow

Task

Interface


Architekturparadigmen – Client/Server-Systeme

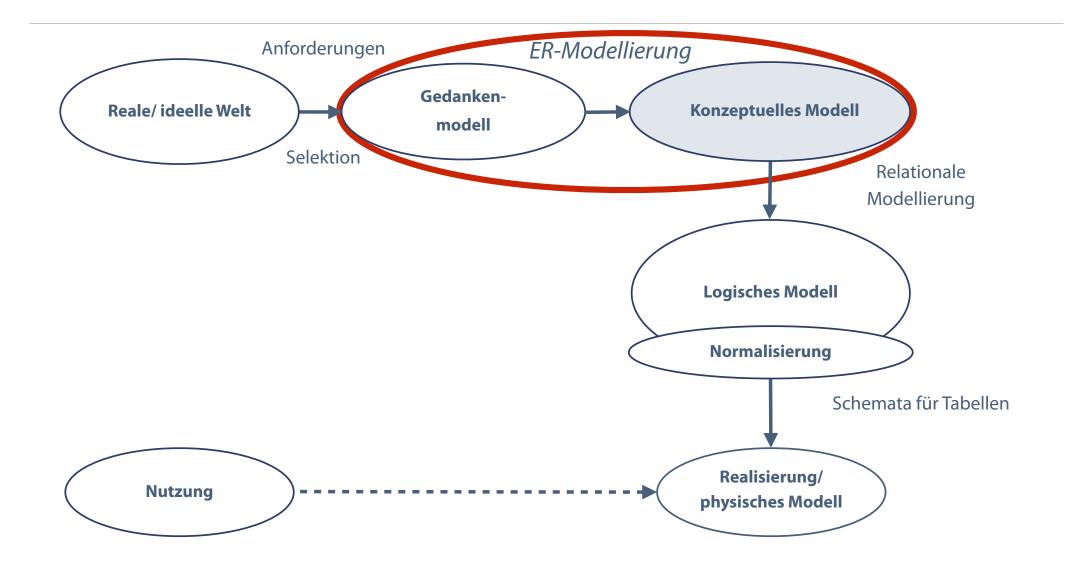
Client/Server-System - zweischichtig

- Physikalische und räumliche Trennung von Client und Server
- Einfachste Variante eines verteilten Systems
- Verteilung der Komponenten über Rechnergrenzen

Aufgabenteilung zwischen Client und Server

- Datenverwaltung --> Server
- Präsentation --> Client

Modellierung - Abbildung des betrachteten Originals


Vom Original zum Modell - Abbildungsschritte

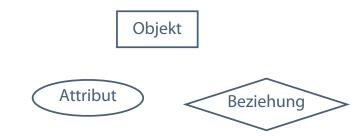
Datenmodelle und -strukturen

Datenbanken und Datenbankmanagementsysteme

Das konzeptionelle Schema: Prinzip des Entity Relationship Modells (ERM)

Der Weg zur Datenbank - ER-Modellierung

Das Entity Relationship Modell (ERM)


Objekte

- Entities Informationsobjekte, Gegenstände
- Attribute Eigenschaften dieser Objekte
- Beziehungen Verknüpfung zwischen Entities

Person Beruf montiert

Symbole

- Entitytypen: Rechtecke
- Attribute: Ellipsen an Rechtecken oder Rauten
- Beziehungstypen: Rauten

Das ERM beschreibt Objekte als Namen im Singular und Beziehungen grafisch im ER-Diagramm.

Entity - Entitytyp

Entities (Objekte) - Informationseinheiten für das Modell

- Reale oder abstrakte Dinge, die für den zu betrachtenden Ausschnitt Relevanz besitzen
- Identifizierung eines Entity über ein eindeutig definierendes Merkmal (bzw. eine eindeutig definierende Kombination von Merkmalen)
- **Beispiel 1:** Mitarbeiter eines Unternehmens Personalnummer
- **Beispiel 2:** Elektromotoren Seriennummer
- **Beispiel 3:** Bestellung Bestellnummer

Entitytyp - Zusammenfassung gleichartiger Entities

- Eindeutige Zuordnung jedes Entity zu einem Entitytyp
- Unterscheidung der Entities durch mindestens einen ihrer Attributwerte

Objekte bzw. Entitäten, die sich durch die selben Eigenschaften beschreiben lassen, werden zu einem Entitytyp zusammengefasst.

Das Attribut

Merkmal eines konkreten Objektes

- Zuordnung mehrerer Attribute (Merkmale) zu einem Objekt
- Ein oder mehrere Attribute (Attributkombination, Schlüssel) -Aufgabe der eindeutigen Identifizierung eines Entities
- Ermittlung der Beziehungskomplexität zwischen Entities

Eigenschaften eines Attributs

- Identifikation jedes Attributs über seinen Namen
- Vereinbarung eines Typs für Attributwerte
- Vereinbarung einer Optionalität

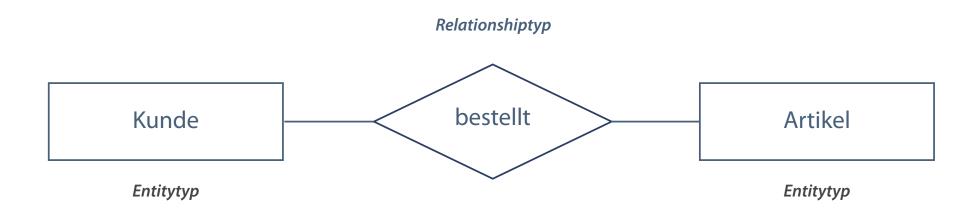
Das Attribut stellt eine Eigenschaft dar, die die Beschreibung einer Entität weiter ausführt.

Quelle: Elmasri, 2002, S. 47

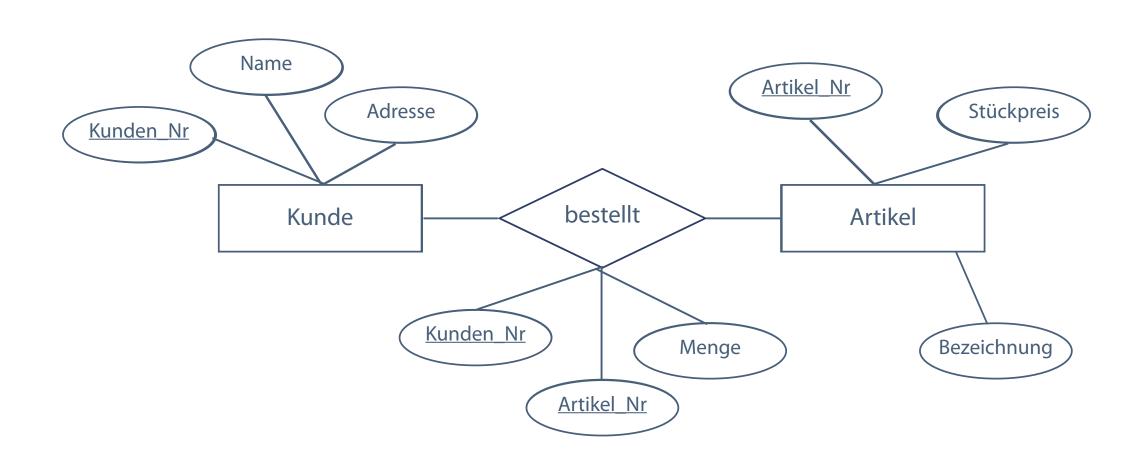
Relationship - Relationshiptyp

Merkmal einer konkreten Beziehung

- Verknüpfung zwischen zwei (oder mehreren) Entitytypen
- Prinzip der Zuordnung beschreibender Merkmale (Attribute) wie bei Entitytypen
- Besonderheit: Zuordnung vom eindeutig beschreibenden Merkmalen von den miteinander zu verbindenden Entitytypen


Unterschied zu Entitytypen

- Verknüpfungseigenschaften = Eigenschaften (Schlüsselwerte) aus den verbundenen Entities
- Identifizierung eines Relationships entweder über Kombination der Schlüsselwerte oder durch zusätzliches Attribut


Binäre Relationshiptypen setzen zwei Entitytypen miteinander in Verbindung.

Quelle: Elmasri, 2002, S. 47

Das Grundmodell

Beispiel eines Entity-Relationship-Diagramms (einfaches Prinzip)

Hörsaal-Quiz - Wissensvertiefung

Öffnet die App über den QR-Code oder den Link:

https://quiz.lswi.de/

pwd: ewinf

Kontrollfragen

- Wie geschieht der Übergang von der realen Welt zur Datenbank?
- Welche Aufgaben hat ein Datenbankmanagementsystem?
- Was ist eine Transaktion?
- Warum muss der normale Benutzer sich nicht um den Mehrbenutzerbetrieb kümmern?

Literatur

Elmasri, R./Navathe, S. B.: Grundlagen von Datenbanksystemen; 3. Auflage, 2002, Addison-Wesley

Stahlknecht, P./Hasenkamp, U.: Einführung in die Wirtschaftsinformatik; 11. Auflage, 2004, Springer Verlag

Mertens P. et. al: Grundzüge der Wirtschaftsinformatik; 12. Auflage; 2017, Springer Verlag

Laudon, Kenneth C./Laudon, Jane P./Schoder, Detlef: Wirtschaftsinformatik Eine Einführung; 3. Auflage, 2015, Pearson

Statista (2021): Monatliche Entwicklung des DAX 2021, Statista, [online] https://de.statista.com/statistik/daten/studie/162176/umfrage/monatliche-entwicklung-des-dax/ [abgerufen am 01.10.2021].

Hilbert, M./P. Lopez (2011): The World's Technological Capacity to Store, Communicate, and Compute Information, in: Science, Bd. 332, Nr. 6025, S. 60–65, [online] doi:10.1126/science.1200970.

Zum Nachlesen

Gronau, N., Gäbler, A.: Einführung in die Wirtschaftsinformatik, Band 1 8. überarbeitete Auflage GITO Verlag Berlin 2019, ISBN 978-3-95545-233-9

Kontakt

Univ.-Prof. Dr.-Ing. Norbert Gronau Center for Enterprise Research Universität Potsdam August-Bebel-Str. 89 | 14482 Potsdam

Germany

Tel. +49 331 977 3322 E-Mail ngronau@lswi.de